
MathFLIX CHALLENGE

Diagonals

Draw the diagonals in the polygons below and complete the table. Use the information from the table to create a graph on the right.

Name	Picture	# of sides	# of diagonals
Triangle	\triangle	3	0
	\bigcirc		
	\bigcirc		

You can use the following formula to calculate the \$#\$ of diagonals in regular polygons. Test it yourself.

n = # of sides

$$\frac{(n-1)(n-2)}{2} - 1 = \# \text{ diagonals}$$

Triangle $\frac{(3-1)(3-2)}{2}$ -1 = 0

Square $\frac{(4-1)(4-2)}{2} -1 =$ ____

Pentagon $\frac{(5-?)(?-2)}{2}-1 =$ ___

Hexagon $\frac{(?-1)(?-?)}{2} -1 =$ ___

Heptagon $\frac{(?-?)(?-?)}{2} -1 =$

Use the formula to calculate the # of diagonals in regular polygons that have the following # of sides.

21 sides _____

31 sides

41 sides

53 sides _____

65 sides

77 sides _____