Links to Instructional Movies that Help Students Review 99 Key Math Concepts for College Readiness Testing

Part III: Number & Operations

Number Properties

4 5	Undefined	Can you divide by zero?
4 6	Real/Imaginary Why We Need Integers	What numbers can be represented on the number line? What numbers cannot be represented on the number line?
4 7	Integer/Non-integer	Draw a number line from $+5$ to -5 and represent all the integers.
4 8	Rational/Irrational Irrational Numbers on the Computer	Circle all the rational numbers. Draw a line under all the irrational numbers. √1, √2, √3, √4, √5, √6, √7, √8, √9, √10, ½, .3, .3, π, ¾, 5/1001, .0007
4 9	Adding/Subtracting Signed Numbers <i>addition</i> <u>Adding Integers</u> <u>Four Ways to Teach Addition</u> <u>subtraction</u> <u>Using Two-Color Chips</u> <u>Subtracting Integers: Adding the Opposite</u>	-4 + -5 -4 5

5	Multiplying/Dividing Signed Numbers	-2(-5)
0	Rules for Multiplication & Division	+10/-2
	Proving Multiplication Rule: Pattern	
	Proving Multiplication Rule: Chips	
5 1	Order of Operations Order of Operations	$4 + 2^{2} \times 10 + 4 - 6(2)$
5 2	Absolute Value Absolute Value: Intro	-2 + 1 - [4 + 5]
5 3	Counting Consecutive Integers <u>Intro to Consecutive Numbers</u> <u>Identifying Consecutive #s Using a Shortcut</u> <u>Identifying Two Consecutive #s Using Division</u> <u>Identifying Two Consecutive #s Using Equations</u> <u>Identifying Three Consecutive #s</u> <u>Identifying Four Consecutive #s</u>	Count the consecutive integers from 10 through 21.

<u>Divisibility</u>

54	Factor/Multiple <i>factors</i> <u>Finding Factors of 126</u>	Find all the factors of 12. Give the first five multiples of 12.
	Solving Rectangle Riddles with Factors	
	Table of Factors	
	multiples	
	<u>Multiples</u>	

55	Prime Factorization <u>Prime Number Definition</u> <u>Prime Factorization</u> <u>Prime Factorization: 2 thru 15</u>	<i>Give the prime factorization of 24.</i>
56	Relative Primes	Explain why 54 and 25 are relative primes.
57	Common Multiple <u>Venn Diagram</u>	Give five common multiples for 2 and 3.
58	Least Common Multiple (LCM) GCF & LCM Games	Find the least common multiple (LCM) for 2 and 5.
59	Greatest Common Factor (GCF) GCF & LCM Games	Find the greatest common factor (GCF) for 40 and 32.
60	Even/Odd Adding Even & Odd Numbers	Will the sum of two odd numbers be odd or even? The product? The difference?
61	Multiples of 2 and 4 <u>Divisibility Rules</u>	What are the divisibility rules for 2? For 4?
62	Multiples of 3 and 9 Divisibility Rules	What are the divisibility rules for 3? 6? 9?
63	Multiples of 5 and 10 <u>Divisibility Rules</u>	What are the divisibility rules for 5? 10?
64	Remainders Common Multiple Puzzle: # 1	What is the remainder when 488 is divided by 5?

Powers and Roots

65	Multiplying and Dividing Powers	$x^{4} \cdot x^{6} =$
	Exponents: xa/xb Rule	$x^{6/x^{4}} =$

66	Raising Powers to Powers Exponents: (xa)b Rule	$(x^{4})^{6} =$
	<u>Exponents: (xy)a Rule</u> <u>Exponents: (x/y)a Rule</u> <u>Square Root</u>	
67	Multiplying and Dividing Roots Square Roots: Multiplying & Dividing	$\sqrt{5} \cdot \sqrt{2} = \sqrt{10} / \sqrt{2} =$
68	Simplifying Square Roots <u>Simplifying Square Roots</u> $\sqrt{XY} = \sqrt{X} \cdot \sqrt{Y}$ <u>Simplifying Square Roots</u> $\sqrt{a/b} = \sqrt{a} / \sqrt{b}$ <u>Simplifying Square Roots</u> $(\sqrt{b2}) = b$	Simplify √18
	Simplifying Square Roots √y2= y	
69	Adding and Subtracting Roots	$2\sqrt{3} + 5\sqrt{3} =$ $2\sqrt{3} - 5\sqrt{3} =$

Fractions and Decimals

7 0	Reducing Fractions <u>Comparing Equal Fractions</u> <u>Using an Equivalent Fraction Chart</u>	Reduce 9/12
7 1	Adding/Subtracting Fractions <u>Adding & Subtracting Fractions: Part 1</u> <u>Adding & Subtracting Fractions: Part 2</u> <u>Adding Fractions with Different Denominators</u> <u>Subtracting Fractions from One</u>	$\frac{1}{2} + \frac{1}{3} =$ $\frac{1}{2} - \frac{1}{3} =$

7 2	Multiplying Fractions <u>Multiplying Fractions: Intro</u> <u>Multiplying Fractions: Illustrated</u> <u>Multiplying Proper Fractions</u> Multiplying Unit Fractions	$l_2 \times l_3 =$
7 3	Dividing Fractions Countdown Challenge: Multiplying & Dividing Fractions	$\frac{1}{2} / \frac{1}{3} =$
7 4	Converting a Mixed Number to an Improper Fraction Changing Fractions to Decimals on the Computer Changing Improper Fractions to Decimals on the Computer Changing Unit Fractions to Decimals on the Computer: Part 1 Changing Unit Fractions to Decimals on the Computer: Part 2	Change 2 $^{2}/_{3}$ to an improper fraction.
7 5	Converting an Improper Fraction to a Mixed <u>Conversion Rules: Improper Fractions & Mixed Numbers</u> <u>Converting Improper Fractions to Mixed Numbers</u> <u>Converting Mixed Numbers to Improper Fractions</u>	Convert 13/6 to a mixed number.
7 6	Reciprocal	<i>What is the reciprocal of 5/8?</i>
7 7	Comparing Fractions Fraction Card Game: Hand 1	Compare ½ and 1/17.
7 8	Converting Fractions to Decimals Test Scores as Fractions, Decimals & Percent	Change 4/5 to a decimal.
7 9	Repeating Decimal Looking for Patterns: Part 1 Looking for Patterns: Part 2	Convert $2/11$ to a decimal and the find the 9^{th} digit.
8 0	Identifying the Parts and the Whole Percents and Your Grades	What is the part and what is the whole in 75%?

Percents

8 1	Percent Formula <u>"Percent of:" Part 1</u> <u>"Percent of:" Part 2</u>	What is 20% of 30? 15 is what % of 30? 30 is 5% of what number?
8 2	Percent Increase and Decrease Word Problem Calculating Discount	Increase 20 by 25%.
8 3	Finding the Original Whole Word Problem Calculating Original Price	After the 5% increase the cost of the coat was \$60. What was the price before the increase?
8 4	Combined Percent Increase and Decrease Exploring Effective Discount	The price of a painting went up 5% one year and 5% the next year. What was the combined percent increase?

Ratios, Proportions, and Rates

8 5	Setting up a Ratio Writing Ratios	What is the ratio of 20 apples to 30 oranges?
8 6	Part-to-Part and Part-to-Whole Ratios Writing Ratios: Intro	If the ratio of boys to girls on the team is $\frac{1}{2}$, what is the ratio of boys to the team?
8 7	Solving a Proportion <u>Proportions: Solving for n</u>	Solve for x 3/5 = 12/x
8 8	Rate Using Proportions	If I bike at 5 miles per hour, how far will I be in three hours?
8 9	Average Rate	Find the average speed of a car that traveled 120 miles at 30 miles per hour and 120 miles at 50 miles per hour.

<u>Averages</u>

90	Average Formula Mean: Part 2	Find the average of the following scores: 98, 100, 100, 65.
91	Average of Evenly Spaced Numbers	Find the average of all the integers for 10 to 20.
92	Using the Average to Find the Sum <u>A Mean Word Problem</u>	The average of 10 numbers in 75. What is the total?
93	Finding the Missing Number Basketball Points: Solution	The average of 5 numbers is 40. Four of the numbers are 2, 8, 8, and 10. Find the missing number.

Possibilities and Probabilities

9 4	Counting and the Possibilities <u>Fundamental Counting Principle: Part 1</u> <u>Fundamental Counting Principle: Part 2</u>	You have 2 pair of shoes, 2 pair of pants and 4 shirts. How many different outfits are possible?
9 5	Probability Probability Formula <u>Probability&Fractions&Decimals&Percents</u>	There are 4 red candies and 6 green candies in a bag. What is the probability that you will select red? Write the answer as a fraction, decimal, and percent.

Trigonometry

96	Sine, Cosine, and Tangent of Acute Angles <u>Defining Sine</u> <u>Defining Cosine & Tangent</u> <u>Making and Using a Sextant</u> <u>Using Sine to Calculate the Height of a Kite</u> <u>Using Tangent to Calculate the Height of a Tree</u> <u>Using Tangent to Find the Distance Across a River</u>	 Right triangle ABC has a hypotenuse of 13 meters. The leg opposite angle a is 5 meters and the leg opposite angle b is 12 inches. Give the ratios for the sine of angle a; the cosine of angle b; and the tan of angle a
97	Cotangent, Secant, and Cosecant of Acute Angles	Right triangle ABC has a hypotenuse of 13 meters. The leg opposite angle a is 5 meters and the leg opposite angle b is 12 inches. Give the ratios for the secant of angle a; the cosecant of angle b; and the cotangent of angle a.

Most Useful Ideas of Math

98	All numbers can be expressed in infinite ways.	Select your favorite name for one:
		14/14, $x + y/x + y$, $x^3/x(x^2, 12 - 11, \frac{1}{2} + 1/2)$
99	Success in math comes through perseverance.	Congratulations. By completing this study guide, you have exhibited the perseverance needed to be successful in math.
	Algebra: 100 names for One	