MathFLIX CHALLENGE

Fundamental Counting Principle

License plates use digits (0-9) and letters of the alphabet (A-Z) to identify motor vehicles. You can find the total number of unique plates if you use the fundamental counting principle (multiply the number of ways each event can occur). Then, design a license plate that will match each criteria.

NUMBER OF POSSIBLE LICENSE PLATES

<table>
<thead>
<tr>
<th>Fundamental Counting Principle</th>
<th>Total</th>
<th>Design an example</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (\times) 26 (\frac{\text{any digit}}{\text{any letter}})</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>36 (\times) (\frac{\text{any digit or letter}}{\text{any digit}})</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>5 (\times) 5 (\frac{\text{odd digit}}{\text{even digit}}) (\times) (\frac{\text{any digit}}{\text{any digit}})</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>10 (\times) 5 (\frac{\text{A-J}}{\text{K-O}}) (\times) (\frac{\text{P-X}}{\text{Y-Z}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{\text{A-J}}{\text{any digit}}) (\times) (\frac{\text{K-T}}{\text{any digit}}) (\times) (\frac{\text{A-J}}{\text{A-J}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{\text{A-J}}{\text{A-J}}) (\times) (\frac{\text{A-Z}}{\text{A-J}}) (\times) (\frac{\text{any digit}}{\text{any digit}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{\text{Square # of 3}}{(1,4,9)}) (\times) (\frac{\text{Multiple # of 3}}{(3,6,9)}) (\times) (\frac{\text{Prime # of 2}}{(2,3,5,7)}) (\times) (\frac{\text{Fibonacci # of 2}}{(1,2,3,5,8)}) (\times) (\frac{\text{Powers # of 2}}{(1,2,4,8)}) (\times) (\frac{\text{Composite #}}{(4,6,8,9)})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>