Number and Operations

Connecting Math Ideas: The real numbers are ones that can be located on a number line. They include natural (counting), whole, integers, rational and irrational numbers. We need them for computation. All the sets of real numbers are infinite.

Teaching Tip: Use three steps when teaching a set of numbers: identification, comparison and computation. Use a number line that extends in both the positive and negative direction to show the position of a number on the number line and how the number might be used in real life. Compare: which numbers are larger, smaller, equal. Compute: What happens when numbers added subtracted, multiplied and divided.

Counting Numbers and Whole Numbers This is what your students should be able to articulate - 1,2,3...are natural or counting numbers and are needed for addition and multiplication - natural or counting numbers are needed for addition and multiplication - number theory is concerned with natural numbers - $0,1,2 \ldots$ are whole numbers and are needed for subtraction (5-5) - numbers are ideas; numerals are symbols we use to express the ideas - numerals are invented by cultures the numeration system we use is HinduArabic	Integers This is what your students should be able to articulate - ...-3, -2, -1, 01,2,3...are integers and are needed for subtraction (5-6)	Rational and Irrational Numbers This is what your students should be able to articulate - rational numbers are expressed as fractions or decimals - rational numbers are needed for division 5 divided by 10) - the root of rational numbers is ratio which means the number can be written as a fraction - the fraction bar is the division symbol in mathematics - irrational numbers cannot be expressed as ratios - the expression of an irrational number is always approximate - irrational numbers are needed for measurement (pi)
Identification	Identification	Identification
Common Multiples Instructional	Coordinate plane	Creating Ratios
Common Multiples: Challenging	Comparison	Golden Ratio Illustrated
Common Multiples: Difficult	Graphing Equalities and Inequalities	Trigonometry Ratios Identification of Fractions
Multi-Digit Multiplication Practice Inspired by The Number Devil: A Mathematical Adventure by Hans Magnus Enzensberger, Rotraut Susanne Berner and Michael Henry Heim (May 1, 2000)	Graphing Inequalities Computation Adding Integers Integer Computation Subtraction with Integers Illustrated	Comparison Comparing Fractions with the Same Denominator Comparing Fractions with the Same Numerator Creating Fractions with the same Numerator
Counting to 15 in Roman, Mayan, Egyptian and Babylonian	Integer Computation- Rules (Algorithms)	Equivalent Fraction Patterns Simplification of Prime and Relatively Prime Fractions

Roman and Hindu-Arabic Numerals Inspired by The Number Devil: A Mathematical Adventure by Hans Magnus Enzensberger, Rotraut Susanne Berner and Michael Henry Heim (May 1, 2000)	Computation Adding and Subtractiing Fractions Using One Denominator
Comparison	Adding \& Subtracting Fractions
Word Problems and Comparisons	Adding \& Subtracting Fractions - Using a new denominator
Computation: Addition/Subtraction	Multiplying and Dividing Fractions Dividing Fractions Illustrated
A Trick for Adding Consecutive Counting Numbers	Multiplying Fractions: An Application
Consecutive Number Patterns	Using Ratios
Patterns: Pascal's Triangle	Decimals
Patterns: Triangular Numbers Inspired by The Number Devil: A Mathematical Adventure by Hans Magnus Enzensberger, Rotraut Susanne Berner and Michael Henry Heim (May 1, 2000)	Comparison of Decimals Using Scientific Notation Percents
Patterns: The 12 Days of Christmas Addition	Find the \% (Percent) Successive Discounts
Computer Pattern: the Binay Numbers	Fractions, Decimals, and Percents
The Sum of Consecutive Odd Numbers $=$ Square Numbers	Changing Fractions to Decimals
Patterns: Fibonacci Sequence	Equivalence of Fractions, Decimals and Percents
Palindrome Trick	Visuals of Equivalent Fractions, Decimal \& Percent
A Trick for Adding Consecutive Counting Numbers	Ordering Fractions, Decimals and Percents: Intructional
Multiplication and Division	Ordering Fractions, Decimals and Percents: practice
Multiplication Patterns	Ordering Fractions, Decimals and Percents: Assessment
Multiplication Table	Addition and Subtraction of Fractions, Decimals \& Percents
Multiplication: lattice method	Ratios
Patterns: Base two Log	Proportions
Multiples and Factors	Intro to Proportions
Identifying Common Multiples	Proportions: Similar Figures
Divisibility Rules for 10,5 and 2	Proportions: Scale
Common Multiples Instructional	Percent Designs
Common Multiples: Challenging	Proportion: Indirect measurement

Common Multiples: Difficult	A jelly bean counting contest
Venn diagram - Common	Proportions: Sampling
Multiples: Instructional	Proportions: Scale of Miles
Venn diagram - Common	Measuring Angles
Multiples: Challenging	
Venn diagram - Common	Estimate the distance traveled on
Multiples: Difficult	Inspired by
	Aunt Harriet's Underground Railroad in the Sky
	by Faith Ringgold
Fundamental Counting	Irrational Numbers
Principle	
Fundamental Counting Principle	Comparing Division vs Square
	$\underline{\text { Root }}$
Fundamental Counting Principle	Square Roots: Rational or
Illustrated: Instructional	Irrational Numbers
Fundamental Counting Principle	All About Pi
Illustrated: Practice	Discovering Pi
Fundamental Counting Principle	
Illustrated: Assessment	
Factorials and Permutations	
Number \& Operations:	
Factorials!	
Factorials \& Permutations	
Using Factorials	
Exponents: Squares and Cubes	
Exponential Growth Illustrated	
Multiplication by Powers of 10	
Using Exponential Notation	
Tricks for Finding Multiples of 3 and 4	
Finding Factors of 126	
Division Puzzle	
Long Division: Guided	
Examples	
Changing Fractions to Decimals	
Order and Operations	
Prime \& Composite Numbers:	
Sieve of Eratosthenes	
Prime Numbers Illustrated 1	
Prime Numbers Illustrated 2	
Table of Factors: 1 to 15	
Prime Factorization	

Three Prime Number Tricks		
Inspired by The Number Devil: A Mathematical Adventure by Hans Magnus Enzensberger, Rotraut Susanne Berner and Michael Henry Heim (May 1, 2000)		
Prime Numbers and Goldbach's Conjectures		
Perfect, Deficient and Abundant		
Numbers		
Multiplication Practice: Happy		
$\underline{\text { Numbers }}$		
Order of Operations		
$\underline{\text { Order of Operations Puzzle 1 }}$		
Order of Operations Puzzle 2		
$\underline{\text { Digital Roots }}$		

